10 największych problemów i paradoksów fizyki
https://www.youtube.com/watch?v=MVu_hRX8A5w
Sabina, #niemraodfizy, opublikowała swój autorski wybór problemów i paradoksów fizyki, które uważa za najbardziej fascynujące. Wybór arbitralny i dyskusyjny, ale na sobotę jak znalazł.
Podsumowanie po polsku (AI):
10. Mózgi Boltzmanna
Według obecnych teorii kosmologicznych, za około 10^100 lat materia we wszechświecie będzie bardzo rozrzedzona i skupi się jedynie przypadkowo, podobnie jak atomy poruszające się w gazie. Teorie te przewidują również, że wszechświat będzie trwał wiecznie, a wieczność to naprawdę długi czas. W tym okresie może się zdarzyć, że kilka atomów przypadkowo połączy się w cząsteczkę. Jest to mało prawdopodobne, ale jeśli poczekamy wystarczająco długo, na pewno się to stanie. Czekając jeszcze dłużej, przypadkowo powstanie komórka, a po jeszcze dłuższym czasie - cały mózg. W rzeczywistości, dokładnie taki sam mózg jak nasz pojawi się gdzieś na końcu wszechświata, i to nie tylko raz, ale nieskończenie wiele razy przez przypadek. Znaczenie tego zjawiska pozostaje zagadką.
9. Dlaczego liczby rzeczywiste?
Zgodnie z najlepszymi współczesnymi teoriami fizyków, natura w swojej istocie opiera się całkowicie na mechanice kwantowej. Mechanika kwantowa bazuje na liczbach zespolonych, które zawierają część rzeczywistą i urojoną, wymagając użycia pierwiastka z minus jeden. Jednak z jakiegoś powodu wszystko, co możemy zaobserwować, zawsze wyrażane jest w liczbach rzeczywistych. To wydaje się niezwykle dziwne. Dlaczego obserwowalny świat opiera się tylko na liczbach rzeczywistych? To tak, jakby fizyka kwantowa ukrywała przed nami jakąś część fizyki. Czy istnieje głębszy powód takiego stanu rzeczy, czy może oznacza to, że istnieje część rzeczywistości, której jeszcze nie nauczyliśmy się obserwować?
8. Paradoks utraty informacji w czarnych dziurach
W fizyce kwantowej informacja nie może zostać zniszczona. Jednak czarne dziury wydają się ją niszczyć. Jeśli coś wpada do czarnej dziury, znika na zawsze. Jedyną rzeczą, która wydostaje się z czarnej dziury, jest promieniowanie Hawkinga, które jest całkowicie przypadkowe i nie zawiera żadnej informacji poza swoją temperaturą. Co się więc dzieje? Albo fizyka kwantowa jest błędna, albo nasze rozumienie czarnych dziur jest nieprawidłowe.
7. Grawitacja kwantowa
Jedną z najsłynniejszych konsekwencji fizyki kwantowej jest to, że cząstki mogą znajdować się w dwóch miejscach jednocześnie. Ale co dzieje się z ich polem grawitacyjnym? Można by sądzić, że jeśli cząstka jest w dwóch miejscach, to jej pole grawitacyjne powinno zachowywać się podobnie. Jednak w teorii Einsteina nie może to nastąpić - teoria ta po prostu na to nie pozwala. Zatem albo grawitacja nie ma właściwości kwantowych, albo pole grawitacyjne cząstek znajdujących się w dwóch miejscach nie porusza się razem z cząstkami. Które z tych założeń jest prawdziwe?
6. Paradoks Fermiego
Gdzie są wszyscy kosmici? Dlaczego o nich nie słyszeliśmy? Jednym z najbardziej zdumiewających odkryć ostatnich dekad w fizyce było to, że systemy planetarne są znacznie bardziej powszechne, niż ktokolwiek sądził. Jednocześnie biochemicy odkryli również wiele sposobów łączenia cząsteczek w cykle autokatylityczne - zasadniczo samowystarczalne cykle, które mogą skutkować systemami zdolnymi do reprodukcji. To w zasadzie elementy składowe życia. Dlaczego więc nie słyszeliśmy o kosmitach? Czy jesteśmy zbyt niezauważalni, ponieważ wszechświat jest pełen życia? Czy oni się ukrywają i nas obserwują, czy może czekają, aż rozwiniemy odpowiednią technologię i nawiążemy z nimi kontakt jako pierwsi?
5. Złożoność i emergencja
Problem ten jest ściśle związany z poprzednim. Wydaje się, że złożoność wszechświata rośnie - powstają nowe struktury, struktury reprodukujące się, życie, a nawet reakcje na filmiki na YouTube. Ale czym dokładnie jest złożoność i dlaczego prawa natury ją powodują? Złożoność jest ściśle związana z emergencją - pojawianiem się nowych cech i funkcji. Jednak w obu przypadkach nie mamy dobrej formalnej definicji ani pojęcia, dlaczego wszechświat miałby być taki, jaki jest. Autorka wierzy, że rozwiązanie tego problemu fizycznego jest warunkiem koniecznym do zrozumienia świadomości.
4. Paradoks dziadka
Teorie Einsteina dotyczące przestrzeni i czasu dopuszczają podróże w czasie, na przykład przez tunele czasoprzestrzenne prowadzące wstecz w czasie. Jest to przynajmniej matematycznie możliwe. Ale gdyby takie podróże w czasie były fizycznie możliwe, otworzyłyby drzwi do paradoksów, takich jak słynny paradoks dziadka. Co by się stało, gdybyś wrócił w czasie i przypadkowo zabił swojego dziadka, przez co nigdy się nie urodzisz i nie możesz wrócić w czasie? Co dokładnie temu zapobiega? Dlaczego podróże w czasie nie są możliwe, czy może jednak są, a my po prostu nie odkryliśmy jeszcze, jak to działa?
3. Strzałka czasu
Fundamentalne prawa natury odkryte dotąd przez fizyków działają tak samo w przód w czasie, jak i wstecz. Jednak w naszym codziennym życiu przód i tył w czasie można wyraźnie rozróżnić. Fizycy zwykle tłumaczą to tym, że z jakiegoś powodu nasz wszechświat zaczął w stanie bardzo niskiej entropii i od tego czasu entropia po prostu rośnie. Jednak Hossenfelder uważa, że to wyjaśnienie nie działa, ponieważ sama entropia nie jest jasno zdefiniowana - zawsze zależy od arbitralnych wyborów. Fundamentalnie entropia wszechświata wynosiła zero na początku i nadal wynosi zero dzisiaj. Oznacza to, że wzrost entropii to tylko inna nazwa, którą nadaliśmy tej samej obserwacji - mianowicie temu, że czas ma kierunek.
2. Kot Schrödingera
Myślowy eksperyment Erwina Schrödingera o martwym i żywym kocie ilustruje absurdalną konsekwencję fizyki kwantowej - jej efekty nie pozostają ograniczone do skal mikroskopowych, ale nieuchronnie przelewają się na zakres makroskopowy, który możemy obserwować na co dzień. W eksperymencie Schrödingera atom jednocześnie rozpada się i nie rozpada, jednocześnie uwalnia truciznę i nie uwalnia, jednocześnie zabija kota i nie zabija. Nie obserwujemy tego w rzeczywistości. Ale dlaczego nie? Wyraźnie zachowanie kwantowe w pewnym momencie znika. Ale co sprawia, że znika? Czy to rozmiar obiektu, jego masa, czy jak sugeruje Penrose - grawitacyjna energia własna, czy może coś zupełnie innego?
1. Paradoks transportera
To pytanie o to, czy Kirk (ze Star Treka) umiera, gdy przechodzi przez transporter. Hossenfelder uważa, że to naprawdę jest pytanie fizyczne. Zgodnie z fizyką, gdybyś znał pozycje wszystkich atomów w ciele Kirka i ich ruch, mógłbyś zeskanować te informacje, rozmontować Kirka na atomy, przesłać je gdzie indziej i z powrotem je złożyć - przynajmniej w teorii. A ponieważ wszystkie atomy są takie same, po co wysyłać atomy? Można wysłać tylko informację i złożyć Kirka z innych atomów. Ale czy to wtedy ten sam Kirk, czy zabiłeś Kirka i teraz masz kopię? Fizyka kwantowa mówi, że nie można zrobić dokładnej kopii żadnego stanu bez zniszczenia oryginału. Ale to tak naprawdę nie odpowiada na pytanie o to, co dzieje się z Kirkiem wewnętrznie - jakie są jego doświadczenia? Czy umiera, czy nie? Autorka myśli nad tym od 30 lat.
#ciekawostki #fizyka #nauka

